STORMWATER MANAGEMENT REPORT

PREPARED FOR

GINGRAS DEVELOPMENT, LLC

Eleanor Rd. Somers, Conn.

BY

WENTWORTH CIVIL ENGINEERS, LLC
177 WEST TOWN STREET
LEBANON, CONNECTICUT 06249

DATE: 11-02-20 REVISED 12-01-20

TABLE OF CONTENTS

DRAINAGE NARRATIVE	1
BASIN MODEL SCHEMATIC	4
PRE. VS. POST DEVELOPMENT DRAINAGE ANALYSIS	5
WATER QUALITY VOLUME CALCULATIONS	33
CATCH BASIN & STORM PIPE DESIGN	34
OPERATIONS & MAINTENANCE SCHEDULE	39
APPENDIX	
DRAINAGE MAP – EXISTING CONDITIONS TO POINT 'A'	APPENDIX A
DRAINAGE MAP – DEVELOPED CONDITIONS TO POINT 'A'	APPENDIX B
DRAINAGE MAP – DRAINAGE AREAS TO CATCH BASINS	APPENDIX C

WENTWORTH CIVIL ENGINEERS LLC

177 West Town Street
Lebanon, Connecticut 06249
Tel. (860) 642-7255
Fax. (860) 642-4794
Email: Wes@WentworthCivil.com

STORMWATER MANAGEMENT REPORT

Project & Site

The site lies at the northern terminus of Eleanor Road in Somers, CT This parcel consists of 22+ acres of land and is currently vacant. A residential development of attached and detached single family dwellings is proposed. The project consists of extending Eleanor Road approximately 900 feet and building 18 new buildings. The site is proposed to be served by public water and onsite septic systems.

Drainage Evaluation, Methodology and References

Pre vs. Post development analysis and proposed detention basin were analyzed and designed using the NRCS TR-55 drainage design manual for 2, 10, 25, 50 & 100 year Type III storm events. The detention basin will also act as a water quality basin and was sized and designed to treat the first 1" rainfall storm event (Water Quality Volume) as per CT DEEP 2004 Stormwater Quality Manual.

Current Drainage Patterns

The site slopes both southerly and southeasterly The southern flow is sheet flow over sandy loams with very little runoff as most runoff is infiltrated into the soil. The majority of the site drains to a large wetland and watercourse system that bisects the eastern portion of the property and ultimately discharges under Route 190 to Gulf Stream.

Proposed Drainage Patterns

Developed site will utilize the same drainage patterns as exist currently. The site will drain via a catch basin and pipe system to a proposed water quality / detention basin located next to the existing terminus of Eleanor Road abutting the wetlands.

The developed onsite storm water treatment design includes the following:

- Onsite detention of peak storm water flows for 2 through 100 year storm events.
- Treatment of 1" Water Quality Volume through water quality / detention basin prior to discharge to the wetlands.

<u>Developed Conditions</u>

• Stormwater Quality:

The site was designed to minimize impervious surfaces and maximize travel time and infiltration of developed storm water flows. All onsite paved roadway, parking and driveway areas drain into a combination water quality / detention basin. The basin has a sediment fore bay that discharges through a filter berm and into the main body of the basin. Travel distance is maximized through the basin to encourage pollutant and sediment treatment during smaller storm events. An underdrain around the inside toe of slope within the basin will allow the 1 inch and smaller storm events to slowly drain out over a 12-24 hour period. A permanent pool will be located below the underdrain elevation with micro pools ranging between 6" and 18" deep and planted with wetlands vegetation in order to maximize nutrient retention and removal from stormwater.

The basin has been sized to retain the first flush 1" storm event that compromise about 85 - 90% of annual storms (water quality volume or WQV). .

 Pre vs. Post Development Analysis and Large Storm Peak Flow Attenuation:

The site was analyzed for pre vs. post development conditions for 2, 10, 25, 50 & 100 year Type III storm events. The majority of the developed site stormwater will be intercepted and discharged to the proposed detention / water quality basin. The detention basin has been designed to keep post development peak flow rates approximately the same or reduced relative to existing conditions. The resulting peak flows are as follows:

		<u>2yr</u>	<u>10 yr</u>	<u>25yr</u>	<u>100yr</u>
Exist.	Point A	5.5 cfs	20.8 cfs	32.5 cfs	52.6 cfs
Dev.	Point A	5.7 cfs	17.7 cfs	28.0 cfs	47.0 cfs

Maintenance of Water Recharge Potential

Open space areas of 91% are being maintained on the site. Post developed landscape design include large portion of open space to remain wooded (63% wooded), lawn and landscaped. Much of the proposed lawn and existing wooded areas will continue to recharge groundwater water through rainwater infiltration into sandy loam soils for all storm events.

Erosion & Sedimentation Control

Design plans include site specific erosion and sedimentation control design measures. Site specific design plans and notes are provided to minimize short term impacts during construction of the project.

Maintenance and Operation

Maintenance and operation of notes for privately owned onsite drainage facilities have been included as part of design plans and as a standalone plan as part of this report.

Basin Model

Hydrograph by Return Period

Project Name:

11-02-2020

	udio v 3.0.0.16		l			Pools Out	flow (cfs)			11-02-2020
Hyd. No.	Hydrograph Type	Hydrograph Name	1-yr	2-yr	3-yr	5-yr	10·yr	25-yr	50-yr	100-yr
1	NRCS Runoff	Pre Channel	1-91	5.481	- J1		20.81	32.52		52.60
2	NRCS Runoff	Post Channel		5.686			16.95	25.05		38.42
3	NRCS Runoff	Post Basin In		2.662			9.580	14.80		23.68
4	Pond Route	Post Basin Out		0.180			3.209	7.478		11.96
5	Junction	Post Total Channel		5.686			17.74	28.01		47.00
5	different	T GOT TOTAL STREET		0.000						
							,			

Project Name:

Hydrograph 2-yr Summary

01/09/apri 2-91 00111111ary

	rdio v 3.0.0.16		B	Ylus - As	Undergreen	Inflow	Maximum	Maximum
Hyd. No.	Hydrograph Type	Hydrograph Name	Peak Flow (cfs)	Time to Peak (hrs)	Hydrograph Volume (cuft)	Hyd(s)	Elevation (ft)	Storage (cuft)
1	NRCS Runoff	Pre Channel	5.481	12.40	34,454			
2	NRCS Runoff	Post Channel	5.686	12.33	30,930	****		
3	NRCS Runoff	Post Basin In	2.662	12.37	16,175	•		
4	Pond Route	Post Basin Out	0.180	15.97	1,998	3	324.89	9,000
5	Junction	Post Total Channel	5.686	12.33	32,929	2, 4		
					·			
				1			İ	
				2				
				=				
	4:							
						•		
	•							
								1
							-	
			1					

11-02-2020

Pre Channel

Hyd. No. 1

Hydrograph Type	= NRCS Runoff	Peak Flow	= 5.481 cfs
Storm Frequency	= 2-yr	Time to Peak	= 12.40 hrs
Time Interval	= 2 min	Runoff Volume	= 34,454 cuft
Drainage Area	= 17.65 ac	Curve Number	= 63*
To Method	= User	Time of Conc. (Tc)	= 23.0 min
Total Rainfall	= 3.22 in	Design Storm	= Type III
Storm Duration	= 24 hrs	Shape Factor	= 484

AREA (ac)	CN	DESCRIPTION
0.18	98	Impervious
68.0	39	Lawn A
0.75	60	Lawn D
4.06	36	Nbods ∧
4.0	70	Woods C
7.8	77	Woods D
17107		Utsighted CH Hother

11-02-2020

Post Channel

Hyd. No. 2

Hydrograph Type	= NRCS Runoff	Peak Flow	= 5.686 cfs
Storm Frequency	= 2-yr	Time to Peak	= 12.33 hrs
Time Interval	= 2 min	Runoff Volume	= 30,930 cuft
Drainage Area	= 11.03 ac	Curve Number	= 68.33*
Tc Method	= User	Time of Conc. (Tc)	= 23.0 min
Total Rainfall	= 3.22 in	Design Storm	= Type III
Storm Duration	= 24 hrs	Shape Factor	= 484
* Composite CN Workshee AREA(ec) CN DESCRI 0.2 98 Impervic 0.93 36 Woods A 3.0 70 Woods C 5.29 77 Woods I 1.11 39 Lewn A 0.5 80 Lewn D 11.03 68 Weighte	PTION rus A		
	Qp =	5.69 cfs	
67			
5 -			
		The state of the s	
4			
4- (\$\frac{1}{2}\) 3- O'			

10

Time (hrs)

12 13 14 15 16 17 18 19 20 21 22 23 24 25

Post Basin In

Hyd. No. 5

Hydrograph Type	= NRCS Runoff	Peak Flow	= 2.662 cfs
Storm Frequency	= 2-yr	Time to Peak	= 12.37 hrs
Time Interval	= 2 min	Runoff Volume	= 16,175 cuft
Drainage Area	= 7.7 ac	Curve Number	= 64*
Tc Method	= User	Time of Conc. (Tc)	= 23.0 min
Total Rainfall	= 3.22 in	Design Storm	= Type III
Storm Duration	= 24 hrs	Shape Factor	= 484

* Composite CN Worksheet

AREA (ac)	CN	DESCRIPTION
2.33	93	Impervious
3.69	39	Lawn A
0.82	80	Lawn D
021	30	Woods A
0.65	77	Woods D
7.7	64	Weighted CN Method Employed

Qp = 2.66 cfs

11-02-2020

Post Basin Out

11-02-2020

Post Total Channel

Hydrograph 10-yr Summary

Project Name: 11-02-2020

drology St	udio v 3.0.0.16		· ·				-,	11-02-20
lyd. Yo.	Hydrograph Type	Hydrograph Name	Peak Flow (cfs)	Time to Peak (hrs)	Hydrograph Volume (cuft)	Inflow Hyd(s)	Maximum Elevation (ft)	Maximum Storage (cuft)
1	NRCS Runoff	Pre Channel	20.81	12.30	105,069			
2	NRCS Runoff	Post Channel	16.95	12.27	82,348			
3	NRCS Runoff	Post Basin In	9.580	12.30	47,951	****		
4	Pond Route	Post Basin Out	3.209	12.77	32,964	3	325.52	16,226
5	Junction	Post Total Channel	17.74	12.37	115,312	2, 4		
			_					
			1					
		=						
		**						

11-02-2020

Pre Channel

Hyd. No. 1

Storm Duration	= 24 hrs	Shape Factor	= 484
Total Rainfall	= 5.16 in	Design Storm	= Type III
Tc Method	= User	Time of Conc. (Tc)	= 23.0 min
Drainage Area	= 17.65 ac	Curve Number	= 63*
Time Interval	= 2 min	Runoff Volume	= 105,069 cuft
Storm Frequency	= 10-yr	Time to Peak	= 12.30 hrs
Hydrograph Type	= NRCS Runoff	Peak Flow	= 20.81 cfs

AREA (ac)	CN	DESCRIPTION
0.18	98	Impervious
63.0	39	LavnA
0.75	80	Tavu D
4.06	36	Woods A
4.0	70	Woods C
7.8	77	Woods D
17.65	63	Weighted CN Meth

Hydrograph Report

Hydrology Studio v 3.0.0.16

11-02-2020

Post Channel

Hyd. No. 2

Hydrograph Type	= NRCS Runoff	Peak Flow	= 16.95 cfs
Storm Frequency	= 10-yr	Time to Peak	= 12.27 hrs
Time Interval	= 2 min	Runoff Volume	= 82,348 cuft
Drainage Area	= 11.03 ac	Curve Number	= 68.33*
Tc Method	= User	Time of Conc. (Tc)	= 23.0 min
Total Rainfall	= 5.16 in	Design Storm	= Type III
Storm Duration	= 24 hrs	Shape Factor	= 484

AREA (ac)	CN	DESCRIPTION
02	98	Impervious
0.93	36	Woods A
3.0	70	Woods C
5.29	77	Woods D
1.11	39	LavuV
0.5	60	Lawn D
11.03	68	Weighted CN Method Employed

11-02-2020

Post Basin In

Hydrograph Type	= NRCS Runoff	Peak Flow	= 9.580 cfs
Storm Frequency	= 10-yr	Time to Peak	= 12.30 hrs
Time Interval	= 2 min	Runoff Volume	= 47,951 cuft
Drainage Area	= 7.7 ac	Curve Number	= 64*
Tc Method	= User	Time of Conc. (Tc)	= 23.0 min
Total Rainfall	= 5.16 in	Design Storm	= Type III
Storm Duration	= 24 hrs	Shape Factor	= 484

AREA (ac)	CN	DESCRIPTION
2 33	98	Impervious
3.69	39	LawnA
0.82	60	Lawn D
0.21	30	Woods A
0.65	77	Woods D
77	64	Weighted CN Metho

Post Basin Out

11-02-2020

Post Total Channel

Hyd. No. 7

= 17.74 cfsPeak Flow Hydrograph Type = Junction Time to Peak = 12.37 hrs = 10-yr Storm Frequency Hydrograph Volume = 115,312 cuft = 2 min Time Interval = 11.03 ac Total Contrib. Area Inflow Hydrographs = 2, 6Qp = 17.74 cfs20 19 18 17 16 15 14 13 12 11 8 6-5-3. 2 1 19 20 21 22 23 24 25 12 13 14 15 16 17 18 10 11 8 6 Time (hrs) Channel - Basin Out - Total Channel

Project Name:

Hydrograph 25-yr Summary

11-02-2020

drology St	udio v 3.0.0.16							11-02-202
Hyd. No.	Hydrograph Type	Hydrograph Name	Peak Flow (cfs)	Time to Peak (hrs)	Hydrograph Volume (cuft)	Inflow Hyd(s)	Maximum Elevation (ft)	Maximum Storage (cuft)
1	NRCS Runoff	Pre Channel	32.52	12.27	158,566			
2	NRCS Runoff	Post Channel	25.05	12.27	119,485			
3	NRCS Runoff	Post Basin In	14.80	12.27	71,794			
4	Pond Route	Post Basin Out	7.478	12.63	56,325	3	326.06	22,458
5	Junction	Post Total Channel	28.01	12.30	175,811	2, 4		
		9						
						a		
					= =			
					,			
			*					
								1
		1						
					J		L	1

Hydrograph Report

Hydrology Studio v 3.0.0.16

11-02-2020

Pre Channel

Hyd. No. 1

= NRCS Runoff	Peak Flow	= 32.52 cfs
= 25-yr	Time to Peak	= 12.27 hrs
= 2 min	Runoff Volume	= 158,566 cuft
= 17.65 ac	Curve Number	= 63*
= User	Time of Conc. (Tc)	= 23.0 min
	Design Storm	= Type III
	Shape Factor	= 484
	= 25-yr = 2 min = 17.65 ac = User = 6.36 in	= 25-yr = 2 min = 17.65 ac = User Time to Peak Runoff Volume Curve Number Time of Conc. (Tc)

* Composite CN Worksheet

AREA (ac)	CN	DESCRIPTION
0.18	93	Impervious
0.83	39	LaunA
0.75	80	Lavu D
4.06	36	Woods A
4.0	70	Woods C
7.8	77	Woods D
17.65	63	Weighted CN Method Employed

Qp = 32.52 cfs36 34 32 30 28 26 24 25. 20 18 16-

11-02-2020

Post Channel

Hyd. No. 2

Hydrograph Type	= NRCS Runoff	Peak Flow	= 25.05 cfs
Storm Frequency	= 25-yr	Time to Peak	= 12.27 hrs
Time Interval	= 2 min	Runoff Volume	= 119,485 cuft
Drainage Area	= 11.03 ac	Curve Number	= 68.33*
Tc Method	= User	Time of Conc. (Tc)	= 23.0 min
Total Rainfall	= 6.36 in	Design Storm	= Type III
Storm Duration	= 24 hrs	Shape Factor	= 484

AREA (ac)	CN	DESCRIPTION
02	93	Impervious
0.93	36	Noods A
3.0	70	Woods C
5 29	77	Woods D
1.11	39	LawnA
0.5	03	Lawn D

Hydrograph Report

Hydrology Studio v 3.0.0.16

11-02-2020

Post Basin In

11-02-2020

Post Basin Out

11-02-2020

Post Total Channel

Hydrograph 100-yr Summary

11-02-2020 Hydrology Studio v 3.0.0.16 Hydrograph Volume (cuft) Maximum Maximum Inflow Time to Peak Hydrograph Hyd. Hydrograph Storage (cuft) Hyd(s) Elevation Flow Peak No. Туре Name (ft) (cfs) (hrs) 250,576 12.27 ----52.60 **NRCS Runoff** Pre Channel 1 181,728 12.27 Post Channel 38.42 **NRCS Runoff** 2 12.27 112,591 23.68 **NRCS Runoff** Post Basin In 3 34,323 326.86 12.60 96,450 3 11.96 **Pond Route** Post Basin Out 4 278,177 2,4 Post Total Channel 47.00 12.30 Junction 5

11-02-2020

Pre Channel

Hyd. No. 1

Hydrograph Type	= NRCS Runoff	Peak Flow	= 52.60 cfs
Storm Frequency	= 100-yr	Time to Peak	= 12.27 hrs
Time Interval	= 2 min	Runoff Volume	= 250,576 cuft
Drainage Area	= 17.65 ac	Curve Number	= 63*
Tc Method	= User	Time of Conc. (Tc)	= 23.0 min
Total Rainfall	= 8.22 in	Design Storm	= Type III
Storm Duration	= 24 hrs	Shape Factor	= 484

AREA (ac) CN	DESCRIPTION
0.18	98	Impervious
63.0	39	LawnA
0.75	60	Lewn D
4.06	36	Woods A
4.0	70	Woods C
7.8	77	Woods D
		Waterland Off Mark

11-02-2020

Post Channel

Hyd. No. 2

Hydrograph Type	= NRCS Runoff	Peak Flow	= 38.42 cfs
Storm Frequency	= 100-yr	Time to Peak	= 12.27 hrs
Time Interval	= 2 min	Runoff Volume	= 181,728 cuft
Drainage Area	= 11.03 ac	Curve Number	= 68.33*
Tc Method	≃ User	Time of Conc. (Tc)	= 23.0 min
Total Rainfall	= 8.22 in	Design Storm	= Type III
Storm Duration	= 24 hrs	Shape Factor	= 484

AREA (ac)	CN	DESCRIPTION
02	93	Impervious
0.93	36	V/bods ∧
3.0	70	Woods C
5 29	77	Woods D
1.11	39	Lavu ∨
0.5	80	Lawn D
11.03	68	Weighted CN Method Employed

11-02-2020

Post Basin In

Hyd. No. 5

Hydrograph Type	= NRCS Runoff	Peak Flow	= 23.68 cfs
Storm Frequency	= 100-yr	Time to Peak	= 12.27 hrs
Time Interval	= 2 min	Runoff Volume	= 112,591 cuft
Drainage Area	= 7.7 ac	Curve Number	= 64*
Tc Method	= User	Time of Conc. (Tc)	= 23.0 min
Total Rainfall	= 8.22 in	Design Storm	= Type III
Storm Duration	= 24 hrs	Shape Factor	= 484

AREA (ac)	CN	DESCRIPTION
2.33	98	Impervious
3.69	39	LavnA
0.82	03	Lavn D
021	30	Woods A
0.65	77	Woods D
7.7	64	Weighted CN Me

11-02-2020

Post Basin Out

11-02-2020

Post Total Channel

11-02-2020

Basin 1

Stage-Storage

11-02-2020

Basin 1

Stage-Discharge

Culvert / Orifices	Culvert	1	Orifices 2	3	Perforated Riser
Rise, in	18				Hole Diameter, in
Span, in	18				No. holes
No. Barrels	1				Invert Elevation, ft
Invert Elevation, ft	324.10				Height, ft
Orifice Coefficient, Co	0.60				Orifice Coefficient, Co
Length, ft	20				
Barrel Slope, %	.5				
N-Value, n	0.013				
Weirs	Riser*	1*	Weirs 2	3	Ancillary
Shape / Type		Rectangular			Exfiltration, in/hr 0.50*
Crest Elevation, ft		324.9			Tailwater Elevation, ft
Crest Length, ft		6			
Angle, deg					
Weir Coefficient, Cw		3.3			

11-02-2020

Basin 1

Stage-Storage-Discharge Summary

Stage	Elev.	Storage	Culvert	(Orifices, cf	s	Riser		Weirs, cfs	1	Pf Riser	Exfil	User	Total
Stage (ft)	(ft)	(cuft)	(cfs)	1	2	3	(cfs)	1	2	3	(cfs)	(cfs)	(cfs)	(cfs)
0.00	322.90	0.000	0.000					0.000				0.000		0.000
0.10	324.10	0.000	0.000					0.000				0.107		0.107
2.00	326.00	21,655	7.078 oc					7.078 s				0.157		7.235
3.00	327.00	36,335	12.40 ic					12.40 s			0	0.183		12.58
												The state of the s		
								1						
														Į.
			ı ı											
			P											
												•		
													1	

WENTWORTH CIVIL ENGINEERS LLC

177 West Town Street
Lebanon, Connecticut 06249
Tel. (860) 642-7255
Fax. (860) 642-4794

Email: Wes@WentworthCivil.com

WATER QUALITY VOLUME CALCULATIONS

PREPARED FOR SOAPSTONE ESTATES SOMERS, CT DATE: 10-21-20

AREA = 335,412 SF

IMPERVIOUS AREA = 73,300 SF: I = .22

 $WQV=1"((.05+(.9)(.22)) \times 335,412 \text{ sf}/12" = 6,900 \text{ cf}$

BOTTOM AREA BASIN: 8,800 SF

DEPTH OF WQV (BASIN BOTTOM TO LOW FLOW OUTLET): 0.8FT

SEDIMENT FOREBAY (10% WQV): 690 CF (MIN.)

Treatment methods of first 1" rainfall from impervious areas (WQV) that falls on proposed roof and pavement areas will be collected by drainage system and discharged to the onsite Water Quality / Detention Basin and stored during small storms of 1" or less. This volume of water will percolate into embankment side and be collected by an under drain and slowly released through the outlet structure over a period of 24 to 48 hours.

Composite C Worksheet Stormwater Studio 2020 v 3.0.0.21

12-03-2020

Line No	Description	Drainage Area	Runoff Coeff	CxA	Composite	Structure ID
		(ac)	(C)		(C)	
	Paved	0.160	0.90	0.144		
1	Grass	0.140	0.30	0.042		1
= =	Totals	0.300		0.186	0.62	
	Paved	0.120	0.90	0.108		
2	Grass	0.060	0.30	0.018	-	3
	Totals	0.180		0.126	0.70	
	Paved	0.140	0.90	0.126		
3	Grass	0.120	0.30	0.036		5
	Totals	0.260		0.162	0.62	
	Paved	0.050	0.90	0.045		
4	Grass	0.050	0.30	0.015		7
	Totals	0.100		0.060	0.60	- 13
	Paved	0.330	0.90	0.297		
5	Grass	0.360	0.30	0.108	-	9
	Totals	0.690		0.405	0.59	
***********	Paved	0.020	0.90	0.018		
7	Grass	1.190	0.30	0.357		22
	Woods	1.630	0.25	0.408		
	Totals	2.840		0.783	0.28	
	Paved	0.160	0.90	0.144		
8	Grass	0.170	0.30	0.051]	2
	Totals	0.330		0.195	0.59	
	Paved	0.120	0.90	0.108		
9	Grass	0.060	0.30	0.018		4
	Totals	0.180		0.126	0.70	
	Totals	0.100		0.120	0.70	

Composite C Worksheet Stormwater Studio 2020 v 3.0.0.21

12-03-2020

Line No	Description	Drainage Area	Runoff Coeff	CxA	Composite	Structure ID
		(ac)	(C)		(C)	
	Paved	0.100	0.90	0.090		
10	Grass	0.090	0.30	0.027		6
	Totals	0.190		0.117	0.62	
	Paved	0.050	0.90	0.045		
11	Grass	0.890	0.30	0.267		21
	Totals	0.940		0.312	0.33	
	Paved	0.230	0.90	0.207		
12	Grass	0.180	0.30	0.054		8
	Totals		0.261	0.64		
					5	

亡
0
Ω
0
Y
Œ,
C

Вур	No Pi		o	œ	7	S	ဖ		φ	0		თ	w	S	37
	Depr	(ii)	0.0	0.0	0.0	0.0	0.0	ı	0.0	0.0	0.0	0.0	0.0	0.0	
Inlet	Spread	£	5.00	3.80	4.17	3.27	6.70	ı	10.01	5.07	3.80	3.70	6.57	5.67	
	Depth	£	0.15		0.13	0.10	0.20	ı	0:30	0.15			0.20	0.17	
	Spread	£	5.00	3.80	4.17	3.27	6.70	i	10.01	5.07	3.80	3.70	6.57	5.67	
	Depth	£	0.15		0.13	0.10	0.20	ï	0:30	0.15			0.20	0.17	
	c		0.013	0.013	0.013	0.013	0.013	ı	0.013	0.013	0.013	0.013	0.013	0.013	
Gutter	×	(ft/ft)	0.030	0.030	0.030	0.030	0.030	•	0.030	0.030	0.030	0:030	0:030	0.030	
	Sw	(ft/ft)	0.030	0:030	0:030	0:030	0.030	1	0.030	0.030	0.030	0:030	0.030	0.030	
	A	£						•							
	S	(ft/ft)	0.010	0.020	0.020	0.010	0.010	•	Sag	0.010	0.020	0.020	Sag	0.010	
	Area	(sqft)	9			ŧ.	ı	,	2.56	ľ	ı	,	2.56	î	
Grate	W	£	1.60	1.60	1.60	1.60	1.60	1	1.60	1.60	1.60	1.60	1.60	1.60	
	L.	£	3.20	3.20	3.20	3.20	6.40	,	3.20	3.20	3.20	3.20	3.20	3.20	
r.	L,	£	3.20	3.20	3.20	3.20	6.40	,	,	3.20	3.20	3.20	ı	3.20	,
Curb	ĭ	(ii)	4.0	4.0	0.4	4.0	4.0			0.4	0.4	0.4		0.	
	Byp	(cts)	0.00	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.00	0.00	
a	Capt	(cfs)	0.89	0.61	0.77	0.29	1.96	ı	2.79	0.94	0.61	0.57	1.38	1.26	
O	Carry	(cfs)	0.00	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.00	0.00	
	Catch	(cfs)	0.89	0.61	0.77	0.29	1.96	i	2.79	0.94	0.61	0.57	3.0	1.26	
et			Combination	Combination	Combination	Combination	Combination	Manhole	Grate	Combination	Combination	Combination	Grate	Combination	
Inlet	B			m	s,	7	o	10	22	2	4	9	21	∞	
Line	9		٠-	2	m	4	ω	ω	7	ω	თ	10		27	

															38-	
Line	o N		-	- ^	ı m	4	Ŋ	φ	7	ø	თ	5		12		2-1203.sws
Surface Elev		ត ១	326.00	333.48	335.93	338.23	340.62	337.55	340.40	333.48	335.93	338.23	337.55	337.55		Project File: ELEANOR ROAD-Rev 2020-1203.sws
Surfac		<u>s</u>	333.48	335.93	338.23	340.62	337.55	340.40	337.00	333.48	335.93	338.23	337.50	338.00		ELEANOR RC
	å	5 §	325.60	326.32	327.93	328.66	329.87	331.49	334.04	330.41	328.91	330.88	334.50	331.51		Project File: E
	1	D (325.85	327.69	328.45	329.62	330.82	331.55	334.71	330.63	329.13	331.10	335.00	331.52		
Elev	å	5 €	324.10	324.50	326.08	326.66	328.67	329.83	333.33	330.00	328.58	330.58	334.00	330.08	ŷ.	
InvertElev	É	G €	324.50	326.08	326.66	328.67	329.83	330.34	334.00	330.22	328.80	330.80	334.50	330.30		
Line	S COLO	adole	0.91	0.64	0.50	0.95	0.50	0.50	1.00	1.01	1.00	1.00	0.60	0.49		
Ë	Sizo	(ii)	13	13	8	35	65	8	12	12	12	15	12	13		
		(4/4)	5.17	4.42	3.98	4.38	4.51	1.69	4.69	3.08	2.68	2.49	3.51	1.03		
ity	૦૯તિ૯) (§	10.01	8.38	7.46	10.23	7.43	7.43	3.56	3.57	3.56	6.46	2.75	4.53		
		(cfs)	8.89	7.80	7.04	6.20	6.12	2.77	2.79	0.94	0.61	0.57	1.38	1.26		
ιίty	รแองแ	(in/hr)	3.24	3.30	3.33	3.38	3.45	8. 9.49	3.51	1.81	4.81	1.8	4.46	6.87		
	Svst		_	22.47	22.07	21.48	20.66	20.22	20.00	5.00	10.00	9.00	12.00	10.00		
	Inlet	mju)	5.0	5.0	5.0	5.0	10.0	0.0	20.0	5.0	10.0	5.0	12.0	10.0		7.5
			2.75	2.37		1.83	1.77	0.30	0.80	0.19	0.13	0.12	0.31	0.26		-1.idf, Return Period = 10-yrs.
	Incr		0.19	0.13	0.16	90.0	0.41	0.00	0.80	0.19	0.13	0.12	0.31	0.26		Period
jeu	Ratio	<u> </u>	0.62	0.70	0.62	0.60	0.59	0.00	0.28	0.59	0.70	0.62	0.33	0.64		f, Return
		(ac)	6.420	5.790	5.430	4.980	4.880	2.840	2.840	0.330	0.180	0.190	0.940	0.410		-1.id
	Incr	(ac)	0.300	0.180	0.260	0.100	0.690	0.000	2.840	0.330	0.130	0.190	0.940	0.410		
դյն	แอๆ	£	44.00	248.00		212.00	232.00	102.00	67.00	21.89	22.04	22.00	83.73	44.74		
Line	<u>3</u>		TUO-1	-4	5-3	7-5	2-6	10-9	22-9	2-1	4	6-5	21-9	o- e	T 2	
		1000				-					_		-			

STORMWATER OPERATIONS AND MAINTENANCE PLAN SOAPSTONE ESTATES ELEANOR ROAD SOMERS, CT

DATE: 12-02-20

NOTE: PRIOR TO ANY CLEANING W/IN BASIN, ETC. THE TOWN OF SOMERS INLAND WETLANDS AGENT IS TO BE NOTIFIED OF ACTIVITY.

-WATER QUALITY AND DETENTION BASIN

INSPECT AFTER MAJOR RAINSTORMS (1" OR GREATER) & REMOVE TRASH & DEBRIS

INSPECT BASIN INLETS AND OUTLETS AND SIDE SLOPES FOR STRUCTURAL INTEGRITY & SEDIMENT ACCUMULATION. REMOVE SEDIMENTATION AFTER ACCUMULATION IN EXCESS OF 6". RESEED WITH WET MEADOW GRASS SEED MIX AND MULCH. JUTE MAT CAN BE USED TO STABILIZE AREAS THAT ARE RESEEDED UNTIL VEGETATION HAS BEEN ESTABLISHED

INSPECT BASIN BOTTOM. REMOVE SEDIMENTATION ACCUMULATION IN WHEN IN EXCESS OF 12" DEEP. PUMP DOWN ANY STANDING WATER PRIOR TO SEDIMENT REMOVAL. RESEED W/ WET MEADOW GRASS SEED MIX AND MULCH W/ WEED FREE HAY OR STRAW.

INSPECT STONE FILTER BERMS FOR STRUCTURAL INTEGRITY. REPAIR AS REQUIRED. IF LONG TERM STANDING WATER BEHIND STONE BERMS IS IN EXCESS OF 12" DEEP, REPLACE ENTIRE BERM, AS GRAVEL CORE IS MORE THAN LIKELY PLUGGED W/ FINE MATERIALS.

INSPECT EMBANKMENT. VERIFY THAT NO AREAS OF SETTLEMENT HAVE OCCURRED. FILL/REGRADE TOP OF BERM AS NECESSARY TO MAINTAIN MINIMUM TOP OF BERM ELEVATION. RESEED AND MULCH AS NECESSARY. MOW EMBANKMENT AT LEAST ONCE PER YEAR.

INSPECT OUTLET STRUCTURE. REMOVE ANY ACCUMULATED DEBRIS OR SEDIMENT FROM INLET. INSPECT OUTLET FOR STRUCTURAL INTEGRITY AND REMOVE DEBRIS AND SEDIMENT. REPAIR RIP RAP AREAS AS REQUIRED.

-CULVERT INLETS AND OUTLETS

INSPECT AFTER MAJOR RAINSTORMS (1" OR GREATER) & REMOVE TRASH & DEBRIS

REMOVE SEDIMENTATION AFTER ACCUMULATION IN EXCESS OF 12". RESEED WITH WET MEADOW GRASS SEED MIX AND MULCH OR RESTABILIZE WITH RIP RAP. JUTE MAT CAN BE USED TO STABILIZE AREAS THAT ARE RESEEDED UNTIL VEGETATION HAS BEEN ESTABLISHED

-PAVED AREAS

SWEEP ANNUALLY IN SPRING TO REMOVE SAND AND SILT MATERIALS

-CATCH BASINS

VACUUM SUMPS ANNUALLY IN SPRING TO REMOVE SAND AND SILT MATERIALS. REMOVE ANY DEBRIS THAT MAY BE CLOGGING INLET GRATE TWICE PER YEAR OR AS NECESSARY. INSPECT FOR STRUCTURAL INTEGRITY AND REPAIR AS REQUIRED

-OVERALL SITE

ONSITE USE OF HERBICIDES, PESTICIDES AND FERTILIZERS SHOULD BE KEPT TO A MINIMUM.

277 GINGRASSOM

DATE: 10-22-20 SCALE: 1"=80' SHEET 1 OF 1

DATE: 10-22-20 SCALE: 1"=80' SHEET 1 OF 1

